+ Securing interruptible
— enclaved execution on
small microprocessors

Matteo Busi

Joint work with:
J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J.T. Muhlberg, F. Piessens

21/02/2021




Isolation mechanisms




Isolation mechanisms

Abstractions for well-defined interaction among (untrusted) programs




Isolation mechanisms

Abstractions for well-defined interaction among (untrusted) programs

1. Processes
2. User/kernel isolation




Isolation mechanisms

Abstractions for well-defined interaction among (untrusted) programs

1. Processes

2. User/kernel isolation

3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)




Isolation mechanisms

Abstractions for well-defined interaction among (untrusted) programs

1. Processes

2. User/kernel isolation

3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)

Programmers (unknowingly) use them for security!




Isolation mechanisms ... are broken




Isolation mechanisms ... are broken

Advanced uarch. features have proven to break security!




Isolation mechanisms ... are broken

Advanced uarch. features have proven to break security!




Isolation mechanisms ... are broken

=)

Advanced uarch. features have proven to break security!




Isolation mechanisms ... are broken

@x
g

Advanced uarch. features have proven to break security!




When isolation ... isolates?




When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”




When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”




When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”




When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”




When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”

Isolation security £ equiconvergence under any attacker, i.e., contextual equivalence




Goals




Goals

(H) High-language ~
ISA with an isolation mechanism =
the programmer’s mental model




Goals

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism = High-language + carefully implemented
the programmer’s mental model “problematic” feature(s)




Goals

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism = High-language + carefully implemented
the programmer’s mental model “problematic” feature(s)

We want:

 isolation of L not weaker than that of H, and
« backwards compatibility




Goals (formally)




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)

Preservation

—
v [Ely




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)

Preservation

—
v [Ely




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)

Preservation

—
| u




Goals (formally)

(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)

Preservation

U<=>U ?

l.e., H and L are fully abstract




Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
- Attacker model: everything outside the enclave (incl. 0S, 1/0 devices, ...)
- Code and data integrity and confidentiality, via attestation & access control




Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
- Attacker model: everything outside the enclave (incl. 0S, 1/0 devices, ...)
- Code and data integrity and confidentiality, via attestation & access control

Our focus: just isolation aspects




Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
- Attacker model: everything outside the enclave (incl. 0S, 1/0 devices, ...)
- Code and data integrity and confidentiality, via attestatten-& access control

Our focus: just isolation aspects




Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
> RISC instruction set

> Each instruction may take a different amount of time

- 64KB of memory, split into protected (enclaved) and unprotected

- No speculative execution, no interruptible enclaves, ...

https://distrinet.cs.kuleuven.be/software/sancus/




Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
o RISC instruction set

> Each instruction may take a different amount of time

- 64KB of memory, split into protected (enclaved) and unprotected

- No speculative execution, no interruptible enclaves, ...

https://distrinet.cs.kuleuven.be/software/sancus/




Why no interruptible enclaves?




Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS'18]




Why no interruptible enclaves?
)

Nemesis attack! [Van Bulck et al., CCS'18]




Why no interruptible enclaves?
)

MOV #OxCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) MOV @R7 R5

Nemesis attack! [Van Bulck et al., CCS'18]




Why no interruptible enclaves?
)

MOV #OxCAFE R5 MOV R5 0(R6)

MOV R5 0O(R6)

Nemesis attack! [Van Bulck et al., CCS'18]




Why no interruptible enclaves?
)

MOV #®XCAFE R5 MOV R5 0(R6) %
MOV R5 0(R6) %

Nemesis attack! [Van Bulck et al., CCS'18]




First try: constant delay
)

MOV #OxCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) MOV @R7 R5




First try: constant delay
)

MOV #OxCAFE R5 MOV R5 0(R6)

MOV R5 0O(R6)




First try: constant delay
)

PAD: 2

MOV #OxCAFE R5 MOV R5 0(R6)
cycles

MOV R5 0 (R6) PAD: 4 cycles




First try: constant delay
)

PAD: 2

MOV #OxCAFE R5 MOV R5 0(R6)
cycles

MOV R5 0 (R6) PAD: 4 cycles




First try: constant delay
)

PAD: 2
MOV #OXCAFE RS MOV R5 0(R6)
cycles
MOV R5 0 (R6) PAD: 4 cycles

Is Nemesis fixed?




Nope, it is not!

A fair number of details:




Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers




Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers

o What if an interrupt arrives during the padding?




Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers
o What if an interrupt arrives during the padding?

o What if another interrupt arrives before the previous have been handled?




Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers
o What if an interrupt arrives during the padding?
o What if another interrupt arrives before the previous have been handled?

o Can memory be shared between the enclave and the rest of the system?




Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers

o

What if an interrupt arrives during the padding?

o

What if another interrupt arrives before the previous have been handled?

o

Can memory be shared between the enclave and the rest of the system?

... And a few other subtle cases!

o]




/

How do we know we are done? @




/

.

How do we know we are done? @

1. Model SancusasHandL

~

2. Prove full abstraction, i.e., preservation + reflection!

J




Step 1: Sancus as Hand L




Step 1: Sancus as Hand L

High-language is Sancus"
Core of Sancus:
Core of MSP430 ISA
Isolation mech.: One single enclave




Step 1: Sancus as Hand L

High-language is Sancus" Low-language is Sancust
Core of Sancus: SancusH +
« Core of MSP430 ISA Interrupts handled in constant-time

 Isolation mech.: One single enclave inside enclaves




Step 1: Sancus as Hand L

High-language is Sancus" Low-language is Sancust
Core of Sancus: Sancust +
« Core of MSP430 ISA Interrupts handled in constant-time
 Isolation mech.: One single enclave inside enclaves
Attackers:

- memory outside enclave, including ISR
« 1/0 device for raising interrupts/counting cycles/...




Step 2: full abstraction, reflection




Step 2: full abstraction, reflection




Step 2: full abstraction, reflection

----------------------

______________________




Step 2: full abstraction, reflection

« Thisis the easy part!




Step 2: full abstraction, reflection

|y = @u ¢ .

« Thisis the easy part!
e Attackers in SancusH € Attackers in Sancust




Step 2: full abstraction, preservation




Step 2: full abstraction, preservation

____________________




Step 2: full abstraction, preservation

Notion of observable behavior in Sancust:
traces and trace equivalence




Step 2: full abstraction, preservation

« Trace equivalence = no Sancus' attacker distinguishes the two programs
« This amounts to show that our mitigations are enough!




Step 2: full abstraction, preservation

@U = @U
Y

T
- Contrapositive: & » & impliesEIlZL.U A (+ symm)

 Proof by backtranslation:
« Given a witness of non-trace equality, we build a witness of a source attack
e Source attackers have fixed memory, traces are not limited:
 Attacker strategy encoded in the I/O device!




Step 2: full abstraction, preservation

@U = @U
X

T
- Contrapositive: & » & impliesEIlZL.U A (+ symm)

 Proof by backtranslation:
« Given a witness of non-trace equality, we build a witness of a source attack
e Source attackers have fixed memory, traces are not limited:
 Attacker strategy encoded in the I/O device!




Full abstraction gives you more... &)

For free: preservation of robust U-sensitive/(-sensitive non-interference:
« Standard, well-studied notion in secure compilation
« Easy Corollary of full abstraction!

Other notions of robust non-interference preservation:
- J-insensitive/()-sensitive: corollary of full abstraction + HP of equiconv. in Sancus"
- stepwise U-sensitive/)-sensitive: for free as corollary of FA!
- M-insensitive: not meaningful (we know our attacker measures time!)




Conclusions

« Initial question: is there a way to add processor features securely while keeping

backwards-compatibility?
« Proposal: use full abstraction, well-fitted for the scope
« Our case: proved that Sancus” and Sancus' are fully abstract

o [E]y =




Future work

What about other features (e.g., caches, spec. execution, ...)?
Can we make the full abstraction approach compositional?

Can we deal with stronger attackers?

Also, what about quantitative measures of security?




Thanks

Questions?




