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Abstractions for well-defined interaction among (untrusted) programs
1. Processes
2. User/kernel isolation
3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)

Programmers (unknowingly) use them for security!
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⟺⇓ ⇓

Isolation security ≜ equiconvergence under any attacker, i.e., contextual equivalence

“Abstractions for well-defined interaction among (untrusted) programs”
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We want:
• isolation of L not weaker than that of H, and
• backwards compatibility
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(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model 

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

⟹
Preservation

⟸
Reflection

i.e., H and L are fully abstract
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Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
◦ RISC instruction set
◦ Each instruction may take a different amount of time
◦ 64KB of memory, split into protected (enclaved) and unprotected
◦ No speculative execution,                                             , ...
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MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) PAD: 4 cycles

PAD: 2 
cycles

Is Nemesis fixed?



Nope, it is not! 

11

A fair number of details:



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!

How do we know we are done? 🤔



Nope, it is not! 

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!

How do we know we are done? 🤔

1. Model Sancus as H and L
2. Prove full abstraction, i.e., preservation + reflection!
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Step 1: Sancus as H and L
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High-language is SancusH

Core of Sancus:
• Core of MSP430 ISA
• Isolation mech.: One single enclave

Attackers: 
• memory outside enclave, including ISR
• I/O device for raising interrupts/counting cycles/…

Low-language is SancusL

SancusH + 
Interrupts handled in constant-time
inside enclaves
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• This is the easy part!
• Attackers in SancusH ⊆ Attackers in SancusL



Step 2: full abstraction, preservation

14

⟺⇓ ⇓



Step 2: full abstraction, preservation

14

⟺⇓ ⇓⟺⇓ ⇓



Step 2: full abstraction, preservation

14

⟺⇓ ⇓⟺⇓ ⇓

𝑇

=

Notion of observable behavior in SancusL:
traces and trace equivalence
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𝑇

=

• Trace equivalence ⇒ no SancusL attacker distinguishes the two programs
• This amounts to show that our mitigations are enough!
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For free: preservation of robust ⇓-sensitive/    -sensitive non-interference: 
• Standard, well-studied notion in secure compilation
• Easy Corollary of full abstraction!

Full abstraction gives you more…🙃

Other notions of robust non-interference preservation:
◦ ⇓-insensitive/    -sensitive: corollary of full abstraction + HP of equiconv. in SancusH

◦ stepwise ⇓-sensitive/    -sensitive: for free as corollary of FA!
◦ -insensitive: not meaningful (we know our attacker measures time!)
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Conclusions
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• Initial question: is there a way to add processor features securely while keeping 
backwards-compatibility?

• Proposal: use full abstraction, well-fitted for the scope
• Our case: proved that SancusH and SancusL are fully abstract



Future work

• What about other features (e.g., caches, spec. execution, …)?

• Can we make the full abstraction approach compositional? 

• Can we deal with stronger attackers?

• Also, what about quantitative measures of security?
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Thanks

Questions? 


