
Securing interruptible
enclaved execution on
small microprocessors

Matteo Busi

21/02/2021

Joint work with:
J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J.T. Mühlberg, F. Piessens

Isolation mechanisms

2

Isolation mechanisms

2

Abstractions for well-defined interaction among (untrusted) programs

Isolation mechanisms

2

Abstractions for well-defined interaction among (untrusted) programs
1. Processes
2. User/kernel isolation

Isolation mechanisms

2

Abstractions for well-defined interaction among (untrusted) programs
1. Processes
2. User/kernel isolation
3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)

Isolation mechanisms

2

Abstractions for well-defined interaction among (untrusted) programs
1. Processes
2. User/kernel isolation
3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)

Programmers (unknowingly) use them for security!

Isolation mechanisms ... are broken

3

Isolation mechanisms ... are broken

3

Advanced 𝜇arch. features have proven to break security!

Isolation mechanisms ... are broken

3

Advanced 𝜇arch. features have proven to break security!

Isolation mechanisms ... are broken

3

Advanced 𝜇arch. features have proven to break security!

Isolation mechanisms ... are broken

3

Advanced 𝜇arch. features have proven to break security!

When isolation ... isolates?

4

When isolation ... isolates?

4

“Abstractions for well-defined interaction among (untrusted) programs”

When isolation ... isolates?

4

“Abstractions for well-defined interaction among (untrusted) programs”

When isolation ... isolates?

4

⇓

“Abstractions for well-defined interaction among (untrusted) programs”

When isolation ... isolates?

4

⟺⇓ ⇓

“Abstractions for well-defined interaction among (untrusted) programs”

When isolation ... isolates?

4

⟺⇓ ⇓

Isolation security ≜ equiconvergence under any attacker, i.e., contextual equivalence

“Abstractions for well-defined interaction among (untrusted) programs”

Goals

5

Goals

5

(H) High-language ≈

ISA with an isolation mechanism ≈
the programmer’s mental model

Goals

5

(H) High-language ≈

ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully implemented
“problematic” feature(s)

Goals

5

(H) High-language ≈

ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully implemented
“problematic” feature(s)

We want:
• isolation of L not weaker than that of H, and
• backwards compatibility

Goals (formally)

6

Goals (formally)

6

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

Goals (formally)

6

⟺⇓ ⇓⟺⇓ ⇓

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

Goals (formally)

6

⟺⇓ ⇓⟺⇓ ⇓

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

⟹
Preservation

⟸
Reflection

Goals (formally)

6

⟺⇓ ⇓⟺⇓ ⇓

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

⟹
Preservation

⟸
Reflection

Goals (formally)

6

⟺⇓ ⇓⟺⇓ ⇓

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

⟹
Preservation

⟸
Reflection

Goals (formally)

6

⟺⇓ ⇓⟺⇓ ⇓

(H) High-language ≈
ISA with an isolation mechanism ≈
the programmer’s mental model

(L) Low-language ≈
High-language + carefully
implemented “problematic” feature(s)

⟹
Preservation

⟸
Reflection

i.e., H and L are fully abstract

Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
◦ Attacker model: everything outside the enclave (incl. OS, I/O devices, ...)
◦ Code and data integrity and confidentiality, via attestation & access control

7

Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
◦ Attacker model: everything outside the enclave (incl. OS, I/O devices, ...)
◦ Code and data integrity and confidentiality, via attestation & access control

7

Our focus: just isolation aspects

Our case: enclaves as isolation mechanism

“Dedicated” execution environments for secure remote computation
◦ Attacker model: everything outside the enclave (incl. OS, I/O devices, ...)
◦ Code and data integrity and confidentiality, via attestation & access control

7

Our focus: just isolation aspects

Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
◦ RISC instruction set
◦ Each instruction may take a different amount of time
◦ 64KB of memory, split into protected (enclaved) and unprotected
◦ No speculative execution, , ...

8

https://distrinet.cs.kuleuven.be/software/sancus/

no interruptible enclaves

Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
◦ RISC instruction set
◦ Each instruction may take a different amount of time
◦ 64KB of memory, split into protected (enclaved) and unprotected
◦ No speculative execution, , ...

8

https://distrinet.cs.kuleuven.be/software/sancus/

no interruptible enclaves

Why no interruptible enclaves?

9

Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS’18]

9

Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS’18]

9

Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS’18]

9

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) MOV @R7 R5

Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS’18]

9

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6)

Why no interruptible enclaves?

Nemesis attack! [Van Bulck et al., CCS’18]

9

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6)

First try: constant delay

10

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) MOV @R7 R5

First try: constant delay

10

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6)

First try: constant delay

10

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) PAD: 4 cycles

PAD: 2
cycles

First try: constant delay

10

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) PAD: 4 cycles

PAD: 2
cycles

First try: constant delay

10

MOV #0xCAFE R5 MOV R5 0(R6)

MOV R5 0(R6) PAD: 4 cycles

PAD: 2
cycles

Is Nemesis fixed?

Nope, it is not!

11

A fair number of details:

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!

How do we know we are done? 🤔

Nope, it is not!

11

A fair number of details:
◦ “Resume-to-end” attacks: further padding is needed after interrupt handlers

◦ What if an interrupt arrives during the padding?

◦ What if another interrupt arrives before the previous have been handled?

◦ Can memory be shared between the enclave and the rest of the system?

◦ ... And a few other subtle cases!

How do we know we are done? 🤔

1. Model Sancus as H and L
2. Prove full abstraction, i.e., preservation + reflection!

Step 1: Sancus as H and L

12

Step 1: Sancus as H and L

12

High-language is SancusH

Core of Sancus:
• Core of MSP430 ISA
• Isolation mech.: One single enclave

Step 1: Sancus as H and L

12

High-language is SancusH

Core of Sancus:
• Core of MSP430 ISA
• Isolation mech.: One single enclave

Low-language is SancusL

SancusH +
Interrupts handled in constant-time
inside enclaves

Step 1: Sancus as H and L

12

High-language is SancusH

Core of Sancus:
• Core of MSP430 ISA
• Isolation mech.: One single enclave

Attackers:
• memory outside enclave, including ISR
• I/O device for raising interrupts/counting cycles/…

Low-language is SancusL

SancusH +
Interrupts handled in constant-time
inside enclaves

Step 2: full abstraction, reflection

13

Step 2: full abstraction, reflection

13

⟺⇓ ⇓

Step 2: full abstraction, reflection

13

⟺⇓ ⇓⟺⇓ ⇓

Step 2: full abstraction, reflection

13

⟺⇓ ⇓⟺⇓ ⇓

• This is the easy part!

Step 2: full abstraction, reflection

13

⟺⇓ ⇓⟺⇓ ⇓

• This is the easy part!
• Attackers in SancusH ⊆ Attackers in SancusL

Step 2: full abstraction, preservation

14

⟺⇓ ⇓

Step 2: full abstraction, preservation

14

⟺⇓ ⇓⟺⇓ ⇓

Step 2: full abstraction, preservation

14

⟺⇓ ⇓⟺⇓ ⇓

𝑇

=

Notion of observable behavior in SancusL:
traces and trace equivalence

Step 2: full abstraction, preservation

13

⟺⇓ ⇓⟺⇓ ⇓

𝑇

=

• Trace equivalence ⇒ no SancusL attacker distinguishes the two programs
• This amounts to show that our mitigations are enough!

Step 2: full abstraction, preservation

13

⟺⇓ ⇓⟺⇓ ⇓

• Contrapositive: implies ∃ . (+ symm)
• Proof by backtranslation:

• Given a witness of non-trace equality, we build a witness of a source attack
• Source attackers have fixed memory, traces are not limited:

• Attacker strategy encoded in the I/O device!

𝑇

=

𝑇

≠ ∧⇓ ⇑

Step 2: full abstraction, preservation

13

⟺⇓ ⇓⟺⇓ ⇓

• Contrapositive: implies ∃ . (+ symm)
• Proof by backtranslation:

• Given a witness of non-trace equality, we build a witness of a source attack
• Source attackers have fixed memory, traces are not limited:

• Attacker strategy encoded in the I/O device!

𝑇

=

𝑇

≠ ∧⇓ ⇑

For free: preservation of robust ⇓-sensitive/ -sensitive non-interference:
• Standard, well-studied notion in secure compilation
• Easy Corollary of full abstraction!

Full abstraction gives you more…🙃

Other notions of robust non-interference preservation:
◦ ⇓-insensitive/ -sensitive: corollary of full abstraction + HP of equiconv. in SancusH

◦ stepwise ⇓-sensitive/ -sensitive: for free as corollary of FA!
◦ -insensitive: not meaningful (we know our attacker measures time!)

14

Conclusions

14

⟺⇓ ⇓⟺⇓ ⇓

• Initial question: is there a way to add processor features securely while keeping
backwards-compatibility?

• Proposal: use full abstraction, well-fitted for the scope
• Our case: proved that SancusH and SancusL are fully abstract

Future work

• What about other features (e.g., caches, spec. execution, …)?

• Can we make the full abstraction approach compositional?

• Can we deal with stronger attackers?

• Also, what about quantitative measures of security?

15

Thanks

Questions?

