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Abstractions for well-defined interaction among (untrusted) programs

1. Processes

2. User/kernel isolation

3. TEEs (TrustZone, KeyStone, SGX, ...)
4. Capabilities (CHERI, Arm Morello)

Programmers (unknowingly) use them for security!
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When isolation ... isolates?

“Abstractions for well-defined interaction among (untrusted) programs”

Isolation security £ equiconvergence under any attacker, i.e., contextual equivalence
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We want:

 isolation of L not weaker than that of H, and
« backwards compatibility
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(H) High-language =~ (L) Low-language ~
ISA with an isolation mechanism ~ High-language + carefully
the programmer’s mental model implemented “problematic” feature(s)

Preservation

U<=>U ?

l.e., H and L are fully abstract
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Sancus

Enclaved-execution (embedded) architecture on top of TI MSP430
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> Each instruction may take a different amount of time
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First try: constant delay
)

PAD: 2
MOV #OXCAFE RS MOV R5 0(R6)
cycles
MOV R5 0 (R6) PAD: 4 cycles

Is Nemesis fixed?
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Nope, it is not!

A fair number of details:
- “Resume-to-end” attacks: further padding is needed after interrupt handlers

o

What if an interrupt arrives during the padding?

o

What if another interrupt arrives before the previous have been handled?

o

Can memory be shared between the enclave and the rest of the system?

... And a few other subtle cases!
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How do we know we are done? @

1. Model SancusasHandL

~

2. Prove full abstraction, i.e., preservation + reflection!

J
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Step 1: Sancus as Hand L

High-language is Sancus" Low-language is Sancust
Core of Sancus: Sancust +
« Core of MSP430 ISA Interrupts handled in constant-time
 Isolation mech.: One single enclave inside enclaves
Attackers:

- memory outside enclave, including ISR
« 1/0 device for raising interrupts/counting cycles/...
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|y = @u ¢ .

« Thisis the easy part!
e Attackers in SancusH € Attackers in Sancust
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Step 2: full abstraction, preservation

Notion of observable behavior in Sancust:
traces and trace equivalence
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« Trace equivalence = no Sancus' attacker distinguishes the two programs
« This amounts to show that our mitigations are enough!
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Full abstraction gives you more... &)

For free: preservation of robust U-sensitive/(-sensitive non-interference:
« Standard, well-studied notion in secure compilation
« Easy Corollary of full abstraction!

Other notions of robust non-interference preservation:
- J-insensitive/()-sensitive: corollary of full abstraction + HP of equiconv. in Sancus"
- stepwise U-sensitive/)-sensitive: for free as corollary of FA!
- M-insensitive: not meaningful (we know our attacker measures time!)




Conclusions

« Initial question: is there a way to add processor features securely while keeping

backwards-compatibility?
« Proposal: use full abstraction, well-fitted for the scope
« Our case: proved that Sancus” and Sancus' are fully abstract

o [E]y =




Future work

What about other features (e.g., caches, spec. execution, ...)?
Can we make the full abstraction approach compositional?

Can we deal with stronger attackers?

Also, what about quantitative measures of security?




Thanks

Questions?




