specification And Implementation

Fabio Gadducci

joint work with Hernan Melgratti, Christian Rolddn, and Matteo Sammartino



The setting: replicated data stores

nd Implementation of Replicated Data Types

Specification a

Fabio Gadducci@IT-MATTERS



Quickest background, 1

» Distributed systems replicate their state over different nodes
in order to satisty non-functional requirements.

> Strong consistency (every request receives the most recent
update) of replicated data is in conflict with availability (every
request is eventually executed) and tolerance to network
partitions (the system operates even in the presence of failures
that prevent communication among components).

» CAP theorem: it is impossible to simultaneously achieve
strong Consistency, Availability and Partition tolerance.

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



CAP Theorem [Gilbert&Lynch,2002]

» It is impossible to simultaneously achieve
» Consistency (read the latest written value):
» Single system image (SSI)/linearizability
> Availability (always-accessible)
» Low latency

> Partition-tolerance (partial failures)

We should cope with weaker notions of consistency

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Quickest background, 2

» Weak consistency: replicas may (temporarily) exhibit
discrepancies (every request receives a correct update).

» How are the data specified? States, state transitions and
returned values should account for the different views that a
data item may simultaneously have.

» In the end, consistency has to be eventually guaranteed (if no
new updates are made to a data item, eventually all accesses
to that item will return the most recent update).

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Replicated Data Types (RDTs)

» Suitable abstractions to deal with replication
» As customary, we are interested in the

> specification,

> 1mplementation, and

> checking of implementation correctness

» Goal: to frame these notions in an algebraic setting

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A Replicated Register

register r :=

»
* Y.
. G
. .
. .
- .
o ¢
-
-
s m =R g, * PRI L
. " . . . s " .
. . «* -
. ve . .
. .
- -
. .
- .
. -
. .
- .
G .

5 .

. g — .

. o — -
L] -
. 1 .

- L]
. .
.
. S
. .

. .
- -
- -
. -

. S .

. .
- .
~ -
L] -
L] -
. .
- L
- L
- L]
. »
. r y — .

—
. ] .
. .

. —_— .
. .
. .
. .
L] -
L] -
L L
L] L
L L]
- L]
. .

.
¢ _— *
., .

.
L] .
., . *
- Ll
L Ll
- L]
. 3 r__ .
.
| | L]
. L2
. .
* L2
. .
. —— .
. .
. .
. .
A . L .
., . . . ‘e, .®
" 2 gagnnr * . " » mmnnt®
. .
. .
. .
. .
. .
. .
L] .

L] .
L



A Replicated Register

register r :=

»
* Y.
. G
. .
. .
- .
o ¢
-
-
s m =R g, * PRI L
.® " . . . . " .
. . «* -
. ve . .
. .
- -
. .
- .
. -
. .
- .
G .

5 .

. g — .

. o — -
L] -
. 1 .

- L]
. .
.
. S
. .

. .
- -
- -
. -

. S .

. .
- .
~ -
L] -
L] -
. .
- L
WI . )

- L]
. »
. r y — .
—
. ] .
. .

. —_— .
. .
. .
. .
L] -
L] -
L L
L] L
L L]
- L]
. .

.
¢ _— *
., .

.
L] .
., . *
- Ll
L Ll
- L]
. 3 r__ .
.
| | L]
. L2
. .
* L2
. .
. —— .
. .
. .
. .
A . L .
., . . . ‘e, .®
" 2 gagnnr * . " » mmnnt®
. .
. .
. .
. .
. .
. .
L] .

L] .
L



A Replicated Register

register r :=?

*
.
PR L I I *
- ., .
«"* L]

PEL L I I

. “I L]
LR 4

*

v
L Z
L2
*
*
*
*
e .
.
.
-
-
-
.
L
L
L]
o
| L]
I p—
| L2
2
e .
.
.
-
-
L
L
L
L]
L]
L]
L]
L d
-
*
*
*
*
*
“
“
Ll
L Ll
- L]
. 3 J— R
I p—
. | | L]
. L2
* L d
* L2
* . ‘ *
* *
* *
* *
0. . *
. *a *
o
., . . . ‘e, e
" 2 gagnnr * . " » mmnnt®
* *
- *
- *
* *
2 *
L] .
L]

L] .
L



A Replicated Register

register r :=?

*
* *
LI B | [ B ]
. " "o LI "
. .
. .. . . L]
*

LA T

L] .
L



A Replicated Register

rd R2 r.= 0 ‘\‘4

Whichisthe . l_ —
Rs3

——

expected result?

.
............
.............

L] .
L] .
......



A Replicated Register

rd R2 r.= 0 ‘\‘4

Whichisthe . l_ —
Rs3

——

expected result?
0

.
............
.............

L] .
L] .
......



A Replicated Register

rd R2 r.= 0 ‘\‘4

Whichisthe . l_ —
Rs3

——

expected result?
0,1

. L] .
......
lllllllllllllll

L] .
L] .
......



A Replicated Register

L]
L]
-
-
.
A d
| { *
-
L]
L]
L]
L]
L]
L]
[

rd R2 r -= 0 ““4
Which isthe ™. L___
ted it?
expected resu R3 |r.=1
0.1 427

. L] .
......
lllllllllllllll

L] .
L] .
......



A Replicated Register

L]
L]
-
-
.
A d
| { *
-
L]
L]
L]
L]
L]
L]
[

I‘d R2 r -= 0 ““4
Which isthe ™. L___
ted it?
expected resu R3 |r.=1
0.1 427 —

. L] .
......
lllllllllllllll



A Replicated Register

LI |
. L]
[ "

-----------
------

* -
.......

—
Rl r-=0
D <—
w r:=0 4
C N S —
Ry |r.=0
. —
R3|r.=0
wr2 ;

L] .
L] .
......



A Replicated Register

LI |
. L]
[ "

- .
......
. L]

1 |
—
R
r.=0 :
C ————
Ry |r.=0
e —
o |
wr(2) —» r=2

L] .
L] .
......



A Replicated Register

registerr:=0

..
L]
L2
2
*
*
*
*
* PRI L
- “ ..
. o
* L2
-
*
*
*
*
*
*
.
.
.
-
-
-
L]
..
L Z
L2
*
*
*
*
*
.
.
-
-
-
.
L
-
L]
o
[ ] L]
I —
| L2
2
— .
.
.
L] -
L] -
L] -
L L
L] L
L L]
- L]
* I - ; L]
. —
| | .
* L d
* -
* *
* ‘ *
. -y .
¢ m— Seea ¢
0. LI . ‘t
., i .
[ bl . [ hd
- - - "
...
- = - n
- L]
* 3 . 2 ’
. I
| | L]
r . L2
* L2
! *
. e .
* *
* *
’_ 0. . *
. ‘a0 *
o
(: ., . . . ‘e, e
" 2 gagnnr * . " » mmnnt®
* *
- *
- *
* *
2 *
L] .
L] .

L] .
L



A Replicated Register

LI |
. L]
[ "

- .
......
. L]

= |
—
: Ry
' r:=0
C | : —
\_: o
rd :
. ~—
G T R3 r.—2
wr(2) " I

L] .
L] .
......



A Replicated Register

LI |
. L]
[ "

- .
......
. L]

| <
Ry
r.=0
C ——
r.=2

.
....
------

L] .
L] .
......



A Replicated Register

LI |
. L]
[ "

- .
......
. L]

: —
rd ;
- R r.=?
Which are the °
expected results? R

wr(2) —»

-
.....
L.
= -
LI
.-.
- -
L.
= -

.
*
* *
* *
* *
'—— - . ‘Q
. . L
e, et . o« e, et
llllll - - " agagnn®
* *
* *
* *
- *

L] .
L] .
......



A Replicated Register

LI |
. L]
[ "

It depends on the . .
visible events and RRTEELLEEPY RSRREELLLEES .
their relative order —

: —
rd ;
- R r.=?
Which are the °
expected results? R

R =
Wr2) —» r:=2

LI
= -
-
-
= -
LI
.-.
- -
L.
= -

.
*
* *
* *
* *
’—— - . ‘Q
. . L
e, et . o« e, et
llllll - - " agagnn®
* *
* *
* *
- *

L] .
L] .
......



Specifying RDTs. .. classically

» op : VIS X ARB — RVAL
» VISibility: A partial order of operations over a replica
» ARBitration: A total order of such operations

» Return VALue: The value returned by the last operation

[BURCKHARDT, GOTSMAN, YANG, ZAWIRSKI 2015]

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

----

» Two operations
> rd(L, ) =7
> wr(k) () = ok Y

. .
--------

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

..............
-------

-
-
L.
= -
]
-
- -

. .
--------

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

..............
-------

wr(1) wr(2)

VISibility

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

..............
-------

wr(1) wr(2)

VISibility

wr(1)

wr(2)

ARBitration

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

..............
-------

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

----

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

----

wr(1)
rd | wr(1) wr(2) ‘ =2
wr(2) —
C
wr(2)
rd | wr(1) wr(2) ‘ =1
wr(1)
C e e

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



A replicated register

. .

. .

wr(1)
rd | wr(1) wr(2) ‘ =2
wr(2) —
C
wr(2)
rd | wr(1) wr(2) ‘ =1
wr(1)
C e e

Last-write-wins

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementing RDTs

» Implementing RTDs means...

» to provide an asynchronous communication mechanism among
replicas

> to ensure its compatibility wrt. the behaviour of the operations

> to ensure global properties (e.g. eventual convergence of replicas)
are preserved

> But first...
> s it possible to get an algebraic presentation of RTDs?
» Is there any implicit assumption on the arbitrations?

» Are RDTs compositional? That is, are arbitrations of larger
visibility orders explained in terms of smaller ones?

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Internalising Values

(wr(1),0F)  (wr(2),0k)



Internalising Values

(wr(l),‘ok) (wr‘(2),ok)

( wr(1) )

rd | wr(1) wr(2) ‘ =2

\ wr(2) /




Internalising Values

rd | wr(1) wr(2) ‘ =2

A specification goes from configurations to sets of arbitrations



Internalising Values

rd | wr(1) wr(2) ‘ = rd | wr(1) wr(2) | —1

A specification goes from configurations to sets of arbitrations



Recovering Rtds: Saturation

rd| wr(1) wr(2) ‘ =2

A specification goes from configurations to sets of arbitrations



Recovering Rtds: Saturation

( wr(1) )

rd | wr(1) wr(2) ‘ =2

\ wr(2) /

(wr(1),0k) (wr(1l),0k) (rd,2)

(wr(1),0k) (wr(2),o0k) | | |
S N ={ (wr(2),0k) (rd,2) (wr(1),ok)

(rd,2) | | |
(rd,2) (wr(2),0k) (wr(2),ok)

A specification goes from configurations to sets of arbitrations



Recovering Rtds: Determinism

(wr(1),0k r(2),0k) (wr(1),0k r(2),0k)
S \ / S \ /

rd2 rdl

value deterministic: empty intersection after removing last event

deterministic: empty intersection after forgetting also the value

(Classic) RTDs have chosen the second path
(thus e.g. forbidding write failures)



Recovering Rtds: Coherence

(wr(1),ok)
| (wr(2),0k)
(wr(2),0k) @ |
| (wr(3),0k)
(rd,2)

Admissible arbitrations never increase when extending visibility

(wr(1),ok) )
(wr(2),0k)
(wr(3),o0k)

(rd,2)




Recovering Rtds: Coherence

(wr(1),0k)  (wr(1),ok)
(wr(1),o0k) | |
| (wr(2),0k) (wr(2),0k) (wr(2),ok)
Gr(2),ok) ® | | |
| (wr(3),ok) (d,2) (wr(3),ok)
(rd,2) | |
r(3)ok)  (rd,2)

V6. 5(G) = X) S(G|__-e)
ectg

Admissible arbitrations never increase when extending visibility



Recovering Rtds: Main Theorem

» There is a one-to-one correspondence between RTDs
and saturated, deterministic, and coherent specifications



Recovering Rtds: Main Theorem

» There is a one-to-one correspondence between RTDs
and saturated, deterministic, and coherent specifications

....which is bad for RDTs!!



Recovering Rtds: Main Theorem

» There is a one-to-one correspondence between RTDs
and saturated, deterministic, and coherent specifications

....which is bad for RDTs!!

saturation and especially determinism are bad!!



Recovering Rtds: Main Theorem

» There is a one-to-one correspondence between RTDs
and saturated, deterministic, and coherent specifications

....which is bad for RDTs!!

saturation and especially determinism are bad!!

( (inc,ok) ) ( (inc, ok) \ ( (inc,fail) ) ( (inc,fail) \
S y = 4 | ¥ iS5 \ = 4 | %

(rd, 1) (rd, L) (rd, L)

\ / \ /

value-deterministic, yet not deterministic



From specifications to transitions systems

states



From specifications to transitions systems

states

14
(G,P) = (G',P") transitions

¢/ = gf Pllg, =P



From specifications to transitions systems

(COMP)

/
(61, Ply, ) 5 (GP) P EP@P,

(Gy LIGy,P) 5 (G UGy, P')

an abstract transition system against which to
compare (by asynchronous simulation) those of
actual implementations...



RDT specifications (functional style)

Abstract representation of Sequence of operations that
the state generate a state

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Abstract representation of states

> A state is given as labelled acyclic directed graph
» anode represents an executed operation
> a label describes
» the invoked operation, and
» the return value

» arcs stands for visible dependencies

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Abstract representation of states

> A state is given as labelled acyclic directed graph
» anode represents an executed operation
> a label describes

» the invoked operation, and <Wr(1)’0k>\ /<Wr(2),0k>

d.2
» the return value (rd, 2)

» arcs stands for visible dependencies

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Abstract representation of states

> A state is given as labelled acyclic directed graph
» anode represents an executed operation

» a label describes

» the invoked operation, and <Wr(1)’0k>\ /<Wr(2),0k>

rd, 2
» the return value (xd,2)
» arcs stands for visible dependencies

(wr(1), ok) (wr(2), ok)

\ /

(rd, 42)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Abstract representation of states

> A state is given as labelled acyclic directed graph
» anode represents an executed operation

» a label describes

» the invoked operation, and <Wr(1)’0k>\ /<Wr(2),0k>

4.2
» the return value :; )

» arcs stands for visible dependencies

(wr(1), ok) (wr(2), ok)

\ /

(rd, 42)

X

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Abstract representation of states

> A state is given as labelled acyclic directed graph
» anode represents an executed operation

» a label describes

» the invoked operation, and <Wr(1)’0k>\ /<Wr(2),0k>

4.2
» the return value :; )

» arcs stands for visible dependencies

(wr(1), ok) (wr(2), ok)

A specification allows us S~

o ‘ (rd, 42)
to make such a distinction X

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT specifications (functional style)

Acyclic graphs Total orders (paths)
labelled over L labelled over L

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT specifications (functional style)

Acyclic graphs Total orders (paths)
labelled over L labelled over L

(wr(1),o0k)
(wr(1),0k)  (wr(2),ok)

S \ 4

rd2

An ordering that generates
that state

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT specifications (functional style)

Acyclic graphs Total orders (paths)
labelled over L labelled over L

An ordering that generates
that state

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT specifications (functional style)

Acyclic graphs Total orders (paths)
labelled over L labelled over L

(wr(1),0k)  (wr(2),ok)

S \/ =0

rd3

A state disallowed by the

specification

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDTs, Algebraically: Roadmap

» Specifications are functors
» Implementations are functors
» LTSs are recovered from these functors

» Implementation correctness via simulation

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT specification, algebraically

> A functor S : PIDag(L) — SPaths (L)

> from the category of states (PIDag(L))

> to the category of sets of paths (SPaths (L))

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of States PiDag(s)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Objects: Acyclic directed graphs labelled over L

» Arrows: monic, past-reflecting morphisms

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of States PiDag(s)

» Objects: Acyclic directed graphs labelled over L

» Arrows: monic, past-reflecting morphisms

the source is
unaltered

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of States PiDag(s)

» Objects: Acyclic directed graphs labelled over L

» Arrows: monic, past-reflecting morphisms

the source is
unaltered

the target of new arcs
are new nodes

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of Set of Paths spathi(s)

> Objects: set of paths labelled over L

> Arrows: past-set morphisms

Each path is obtained
by extending some path

in X

>§

Xy C sat(A, )

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Specifications are functors from piDag(s) t0 SPath(x)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000




Specifications are functors from piDag(s) t0 SPath(»)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000




Specifications are functors from piDag(s) t0 SPath(»)




Specifications are functors from piDag(s) t0 SPath(»)




Specifications may be topological. ..

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

¥
:



Specifications may be topological. ..

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

¥
:



Specifications Are Functors “Preserving” Pushouts. ..

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Specifications Are Functors “Preserving” Pushouts. ..

» (meaning pushouts corresponds to coherence)

> ... plus suitably mapping root extensions

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Specifications Are Functors “Preserving” Pushouts. ..

» (meaning pushouts corresponds to coherence)

> ... plus suitably mapping root extensions

saturated

topological

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Operational interpretation of a specification s

» The category of elements &(S)

o | @) F | e fe o@D
» Objects: @ z with ?E S

: :
> Arrows: @ 3 —— @ :
®

with @‘-—?@ past-preserving

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types




Operational interpretation of a specification & (S)

Root extension

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Operational interpretation of a specification & (S)

Root extension

> &,.(S): The behaviour of multiple replicas

D i —

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types




Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

e
@F —h
u;«« <0<

o
R | &
N N
@ ® 00

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Root-extension

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

A replica
executes € L

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

A replica
executes € L

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

&
|
©E

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Another replica
executes €L

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Another replica
executes &L

Explain how the
computation embeds in
the context

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Recovering labels (Leifer-Milner approach)

Another replica
executes &L

Explain how the
computation embeds in | . Pushout in

the context PDag( L)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Replica LISs, requirement



Replica LISs, requirement

(set of) axioms



Replica LISs, requirement

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

(set of) axioms
l / closure

[ [
o1 — 0 o1 — 0

o’ [
o— 0@ o’ o1 P o9 — 0] P 0



Replica LISs, requirement

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

(set of) axioms

O'Z%O'/ closure
by Ly
oO— 0D 01D 02 — 01 D 0,5

» : [
plus a decomposition requirement for 01 092 — O /



(Part of an) Implementation of a replicated counter

states are functions from
replicas to the naturals



(Part of an) Implementation of a replicated counter

states are functions from
replicas to the naturals

. the axiom updates the
(tnc,ok) o (r)+1 . ‘
o 7y (7[ /r] value of its replica




(Part of an) Implementation of a replicated counter

states are functions from
replicas to the naturals

. the axiom updates the
(znc,ok}\ o (r)+1 . ‘
g 7 U[ /r] value of its replica
/ point-wise updates of

o /
O —7r maX(O', o ) all replicas



(Part of an) Implementation of a replicated counter

states are functions from
replicas to the naturals

. the axiom updates the
(znc,ok)\ o (r)+1 . ‘
g 7 (7[ /r] value of its replica
/ point-wise updates of

o /
O —7r maX(O', o ) all replicas

> : (inc,ok) p
plus a decomposition requirement for maX(O‘ 1,0 2) rr O




Implementation correctness as simulation

An implementation relation Rg is a relation between states
in Is and Cs such that if (o, (G, P)) € Rg then

l I I I l I !
1. if 0 — o then 3(G,P) such that (G,P) — (G,P) and
(O-')<G’)P'>) S= RS
2.if 6 = o" then (G ,P),<G",P") such that (G, P>@'><G", P".
(0,(G,P)) ERg, and (o0, (G, P")) € R

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



RDT implementation, categorically

> A functor I: IR(‘R) — P(‘Mon)

» from the category of sequences of operations performed
over replicas (IR(R))

> to the category of implementation states P("Mon)

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of sequence of operations

» One replica category IR:

» One object

» Words over L as arrows

» Multi replica category IR (‘R) : #R isomorphic copies of IR

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Category of sequence of operations

» One replica category IR:

» One object

» Words over L as arrows

» Multi replica category IR (‘R) : #R isomorphic copies of IR

<wr(l),0k>gr1.lr1-r2.<rd,1>g2

a shorthand for
<wr(l),0k>:R; = R;

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementation Functor

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementation Functor

P("Mon)

Set of all possible states of a replica

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementation Functor

Do
A ( <

I(R2)

P("Mon)

Set of all possible states of a replica

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementation Functor

Do
A ( <

I(R2)

P("Mon)

Set of all possible states of a replica

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Implementation Functor

\ lr1-r2.<rd,1>gr2
o) ’

I(RR)

P("Mon)

Set of all possible states of a replica

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



Final words

» We have provided

> an algebraic characterisation of the specification and (state-
based) implementation of RDTs

» a notion of implementation correctness in terms of (higher-
order) simulation

» The approach suffices to model various well-known RDTs

» We did not consider labels for snd operations because most
RDTs implementation communicate full copies of their state

» The approach does not cover operation-based implementations

Fabio Gadducci@IT-MATTERS Specification and Implementation of Replicated Data Types



